Optical multiple-image authentication based on computational ghost imaging and hybrid non-convex second-order total variation

Author:

Zhou Yaoling1,Sun Yueer2,Yang Mu3,Zhou Bei4,Hou Junzhao3,Zeng Tianyu1,Xiao Zhaolin1,Sui Liansheng15ORCID

Affiliation:

1. Xi’an University of Technology

2. Yonyou Network co., Ltd

3. Xi’an Haitang Vocational College

4. Yan’an Vocational & Technical College

5. Shaanxi Key Laboratory for Network Computing and Security Technology

Abstract

An optical security method for multiple-image authentication is proposed based on computational ghost imaging and hybrid non-convex second-order total variation. Firstly, each original image to be authenticated is encoded to the sparse information using computational ghost imaging, where illumination patterns are generated based on Hadamard matrix. In the same time, the cover image is divided into four sub-images with wavelet transform. Secondly, one of sub-images with low-frequency coefficients is decomposed using singular value decomposition (SVD), and all sparse data are embedded into the diagonal matrix with the help of binary masks. To enhance the security, the generalized Arnold transform is used to scramble the modified diagonal matrix. After using SVD again, the marked cover image carrying the information of multiple original images is obtained using the inverse wavelet transform. In the authentication process, the quality of each reconstructed image can be greatly improved based on hybrid non-convex second-order total variation. Even at a very low sampling ratio (i.e., 6%), the existence of original images can be efficiently verified using the nonlinear correlation maps. To our knowledge, it is first to embed sparse data into the high-frequency sub-image using two cascaded SVDs, which can guarantee high robustness against the Gaussian filter and sharpen filter. The optical experiments demonstrate the feasibility of the proposed mechanism, which can provide an effective alternative for the multiple-image authentication.

Funder

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3