Temporal behavior of the high-power pulsed gas terahertz laser pumped by a fundamental mode TEA CO2 laser

Author:

Geng Lijie,Zhang Ruiliang,Yan Pengji,Qu Yanchen1,Ji Zhikun,Zhai Yusheng,Zhao Weijiang1,Zhang Zhifeng,Zhang Wenyan,Yang Kun

Affiliation:

1. Harbin Institute of Technology

Abstract

Optically pumped gas molecular terahertz (THz) lasers are promising for generating high-power and high-beam-quality coherent THz radiation. However, for pulsed gas THz lasers, the temporal behavior of the output THz pulse has rarely been investigated. In this study, the temporal behavior of a pulsed gas THz pumped by a fundamental-mode TEA CO2 laser has been presented for the first time both in simulation and experiment. A modified laser kinetics model based on the density matrix rate equation was used to simulate the temporal behavior and output pulse energy of a pulsed gas THz laser at different gas pressures. The results clearly show that the working gas pressure and pump pulse energy have critical influences on the output THz pulse shape. Three typical pulse shapes were obtained, and the THz pulse splitting caused by gain switching was quantitatively simulated and explained based on the laser dynamic process. Besides, with an incident pump pulse energy of 342 mJ, the maximum output THz pulse energy of 2.31 mJ was obtained at 385 µm, which corresponds to a photon conversion efficiency of approximately 56.1%, and to our knowledge, this is the highest efficiency for D2O gas THz laser. The experimental results agreed well with those of the numerical simulation for the entire working gas pressure range, indicating that our model is a powerful tool and paves the way for designing and optimizing high-power pulsed gas lasers.

Funder

National Natural Science Foundation of China

Henan Provincial Science and Technology Research Project

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3