Affiliation:
1. National Taiwan University of Science and Technology
2. Lunghwa University of Science and Technology
Abstract
3D printing techniques have great potential in the direct fabrication of microfluidic and many kinds of molds, such as dental and jewelry models. However, the resolution, surface roughness, and critical dimension uniformity of 3D printing objects are still a challenge for improvement. In this article, we proposed a 405nm light emitting diode (LED) backlight module based on stacks of structured films, and the full width half maximum (FWHM) of the angular distribution of this module is reduced to less than ± 15°. Compared with the commercial lens array optical module, the ten points intensity uniformity of an 8.9” build area is improved from 56% to 80%. Moreover, we found that the surface roughness and the sharpness of the edge of the printing objects are also obviously improved by our novel quasi-collimated LED backlight module. These features give us a promising way for the application of microfluidics and micro-optics components in the future.
Funder
Ministry of Education
Ministry of Science and Technology, Taiwan
Subject
Atomic and Molecular Physics, and Optics
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献