Tunable multiple Fano resonances based on a plasmonic metal-insulator-metal structure for nano-sensing and plasma blood sensing applications

Author:

Rohimah Siti1,Tian He1ORCID,Wang Jinfang2,Chen Jianfeng1,Li Jina1,Liu Xing1ORCID,Cui Jingang1,Hao Yu3

Affiliation:

1. Northeast Forestry University

2. Shanghai Xin Yue Lian Hui Electronic Technology Co. LTD

3. Jilin Meteorological Information Network Center

Abstract

A base plasmonic metal-insulator-metal (MIM) waveguide structure consisting of a baffle waveguide and an obround-shaped resonator is designed to produce Fano resonance. The simulation results exhibit that double Fano resonances can be achieved. Based on this structure, an inner obround-shaped resonator is spliced to the former obround-shaped resonator through a slot resonator to form the expanded structure. Then quadruple Fano resonances are produced by the interference between the broadband continuous state arising from the baffle waveguide and the narrowband discrete state arising from the interaction among the inner obround-shaped resonator, the outer obround-shaped resonator, and the slot resonator. The Fano resonance and refractive index sensing characteristics are investigated, and the sensitivity and the figure of merit can reach 1636 nm/RIU and 33562, respectively. Furthermore, the structure filled with blood plasma can be used for detecting plasma concentrations with different refractive indices, and the sensitivity can reach 2.88 n m L / g . The proposed structure with the simple baffle waveguide and obround-shaped resonators may have potential applications in biosensing and nanoscale optical sensing.

Funder

Fundamental Research Funds for the Central Universities

Natural Science Foundation of Heilongjiang Province

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3