Theoretical modeling and simulation of fiber Bragg grating sensor interrogator based on linear variable filter

Author:

Liu Yi1,Liu ZhaoYi1,Huang Anyi1,Wang Jie1,Xin Cheng2ORCID

Affiliation:

1. Wuhan University of Technology

2. Hong Kong Polytechnic University

Abstract

With the increasing frequency of aviation accidents in recent years, aircraft safety has received increasing attention. Aircraft operating condition detection is an important part of aviation safety. Fiber Bragg grating (FBG) sensors, with their excellent characteristics, enable online monitoring of aircraft operating conditions. However, the application of FBG sensors in aviation is currently limited because it is difficult for FBG sensor interrogators to meet the requirements of small size, light weight, and good vibration resistance in the aviation field. Therefore, this paper proposes a linear variable filter (LVF)-based FBG sensor interrogator to meet the requirements. An optical model of the interrogator is established. The parameters which determine the performances of the interrogator are analyzed and the design criteria are discussed. According to the requirements in the aviation field, the optical system of the interrogator is designed. The simulation results show that the LVF-based FBG sensor interrogation system has a bandwidth range of 90 nm (1505 nm-1595 nm), a resolution of 2 pm, and a capacity of 15 FBG sensors.

Funder

Research Program of Sanya Yazhou Bay Science and Technology City under Grant

Technology Development Research Project of China Nuclear Power Co.

Shaoxing ‘Home of Celebrities’ Talent Program

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3