Quasi-symmetry-protected BICs in a double-notched silicon nanodisk metasurface

Author:

Ma Wenbin,Zhou ChaobiaoORCID

Abstract

Bound states in the continuum (BICs) hold great promise in enhancing light–matter interaction as they have an infinite Q-factor. To date, the symmetry-protected BIC (SP-BIC) is one of the most intensively studied BICs because it is easily found in a dielectric metasurface satisfying certain group symmetry. To convert SP-BICs into quasi-BICs (QBICs), structural symmetry shall be broken so that external excitation can access them. Usually, the unit cell’s asymmetry is created by removing or adding parts of dielectric nanostructures. The QBICs are usually excited only by s-polarized or p-polarized light because of the symmetry-breaking of the structure. In this work, we investigate the excited QBIC properties by introducing double notches on the edges of highly symmetrical silicon nanodisks. The QBIC shares the same optical response under the s-polarized and p-polarized light. The effect of polarization on coupling efficiency between the QBIC mode and incident light is studied, and the highest coupling efficiency occurs at a polarization angle of 135, which corresponds to the radiative channel. Moreover, the near-field distribution and multipole decomposition confirm that the QBIC is dominated by the magnetic dipole along the z direction. It is noted that the QBIC covers a wide spectrum region. Finally, we present an experimental confirmation; the measured spectrum shows a sharp Fano resonance with a Q-factor of 260. Our results suggest promising applications in enhancing light–matter interaction, such as lasing, sensing, and nonlinear harmonic generation.

Funder

National Natural Science Foundation of China

Guizhou Provincial Science and Technology Projects

Science and Technology Talent Support Project of the Department of Education in the Guizhou Province

Construction project of characteristic key laboratory in Guizhou Colleges and Universities

The key laboratory of Guizhou Minzu University

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3