Abstract
Channel estimation is a key technology in MIMO-OFDM wireless communication systems. Increasingly extensive application scenarios and exponentially growing data volumes of MIMO-OFDM systems have imposed greater challenges on the speed, latency, and parallelism of channel estimation based on electronic processors. Here, we propose a photonic parallel channel estimation (PPCE) architecture which features radio-frequency direct processing. Proof-of-concept experiment is carried out to demonstrate the general feasibility of the proposed architecture at different frequency bands (100 MHz, 4 GHz, and 10 GHz). The mean square errors (MSEs) between the experimental channel estimation results and the theoretically simulated ones lie on the order of 10−3. The bit error rates (BERs) are below the pre-forward error correction (pre-FEC) threshold. Besides, we analyze the performance of PPCE under different signal-to-noise ratios (SNRs), baseband symbol forms, and weight tuning precisions. The proposed PPCE architecture has the potential to achieve high-speed, highly parallel channel estimation in large-scale MIMO-OFDM systems after the photonic-electronic chip integration.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Subject
Atomic and Molecular Physics, and Optics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献