Cutting depth-oriented ductile machining of infrared micro-lens arrays by elliptical vibration cutting

Author:

Zheng Zhengding,Huang Kai,Lin Chuangting,Huang Weiqi,Zhang Jianguo,Chen Xiao1,Xiao JunfengORCID,Xu Jianfeng

Affiliation:

1. National Innovation Institute of Digital Design and Manufacturing

Abstract

Infrared micro-lens arrays (MLAs) are widely used in advanced optical systems due to their advantages such as low focusing depth and high sensitivity. Elliptical vibration cutting (EVC) is a promising approach for the fabrication of MLAs on infrared brittle materials. However, the mechanism of ductile machining of MLAs prepared by EVC has not been fully elucidated so far. In this paper, based on the vibration intermittent cutting characteristics and the transient material removal state, a ductile machining model of MLAs on brittle material by EVC was established. This model effectively calculates the subsurface damage of the machined surface and realizes the prediction of the critical depth for ductile machining of MLAs. Furthermore, the concave micro-lenses were prepared on single crystal silicon by EVC and ordinary cutting (OC) to verify this model. The results demonstrated that EVC could significantly enhance the critical depth by approximately 4.3 times compared to OC. Microstructural surface damage predominantly occurs at the exit side of the tool cutting. This proposed model accurately predicts the actual critical depth, with an average error of about 7.5%. Additionally, elevating the amplitude in the depth of cut direction could increase the critical depth, but a larger amplitude would inhibit the increase of the critical depth. This study contributes to a better understanding of ductile machining of microstructure on brittle materials and facilitates the process optimization of MLAs fabrication using EVC.

Funder

National Natural Science Foundation of China

Program for HUST Academic Frontier Youth Team

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3