High-performance electro-optical switch using an anisotropic graphene-based one-dimensional photonic crystal

Author:

Tavana Shahab1,Bahadori-Haghighi Shahram1ORCID,Sheikhi Mohammad Hossein1

Affiliation:

1. Shiraz University

Abstract

A novel electro-optical switch is proposed and investigated using the transfer matrix method (TMM) and three-dimensional finite-difference time-domain (3D FDTD) analysis at the near-infrared range. The structure is made of a defect at the middle of a one-dimensional photonic crystal. The defect consists of two anisotropic graphene (AG) sheets separated by a dielectric layer. As a result, a sharp transmission peak with a high quality factor of 5000 appears at the wavelength of 1552.4 nm where light is trapped by the defect. When an external voltage is applied across the AG sheets, their chemical potentials shift in such a way that the trapped photons are absorbed and the switch changes to ON state. According to the presented results, a high extinction ratio of 14.26 dB with a very low insertion loss of 0.18 dB are obtained. The required switching voltage and energy consumption are as low as 4.68 V and 226 fJ/bit, respectively. The 3 dB bandwidth is also calculated to be as high as 17.5 GHz, which makes our proposed switch promising for high speed optical systems.

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3