Effect of molecular concentration on excitonic nanostructure based refractive index sensing and near-field enhanced spectroscopy

Author:

Dutta Arpan1ORCID,Toppari J. JussiORCID

Affiliation:

1. University of Turku

Abstract

Organic thin film based excitonic nanostructures are of great interest in modern resonant nanophotonics as a promising alternative for plasmonic systems. Such nanostructures sustain propagating and localized surface exciton modes that can be exploited in refractive index sensing and near-field enhanced spectroscopy. To realize these surface excitonic modes and to enhance their optical performance, the concentration of the excitonic molecules present in the organic thin film has to be quite high so that a large oscillator strength can be achieved. Unfortunately, this often results in a broadening of the material response, which might prevent achieving the very goal. Therefore, systematic and in-depth studies are needed on the molecular concentration dependence of the surface excitonic modes to acquire optimal performance from them. Here, we study the effect of molecular concentration in terms of oscillator strength and Lorentzian broadening on various surface excitonic modes when employed in sensing and spectroscopy. The optical performance of the modes is evaluated in terms of sensing, like sensitivity and figure of merit, as well as near-field enhancement, like enhancement factor and field confinement. Our numerical investigation reveals that, in general, an increase in oscillator strength enhances the performance of the surface excitonic modes while a broadening degrades that as a counteracting effect. Most of all, this demonstrates that the optical performance of an excitonic system is tunable via molecular concentration unlike the plasmonic systems. Moreover, different surface excitonic modes show different degrees of tunability and equivalency in performance when compared to plasmons in metals (silver and gold). Our findings provide crucial information for developing and optimizing novel excitonic nanodevices for contemporary organic nanophotonics.

Funder

Academy of Finland

Publisher

Optica Publishing Group

Subject

Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3