Raman gain control in optical fibers with orbital-angular-momentum-induced chirality of light

Author:

Liu Xiao1ORCID,Ma Zelin1ORCID,Antikainen Aku1ORCID,Ramachandran Siddharth1

Affiliation:

1. Boston University

Abstract

Stimulated Raman scattering is a particularly robust nonlinearity, occurring in virtually every material because its spectral linewidth and associated frequency shift do not typically depend on phases or directions (i.e. wavevectors) of the interacting light beams. In amorphous materials such as glass fibers, Raman bandwidths are large, enabling its use as a broadband gain element. This ubiquity makes it a versatile means for achieving optical amplification or realizing lasers over a large range of pulsewidths at user-defined colors. However, this ease of deploying the effect also presents itself as a stubborn source of noise in fiber-based quantum sources or parasitic emission in fiber lasers. Here, we show that orbital angular momentum carrying light beams experiencing spin-orbit interactions yield novel phase-matching criteria for Raman scattering. This enables tailoring its spectral shape (by over half the Raman shift in a given material) as well as strength (by ∼ 100×) simply by controlling light’s topological charge – a capability of utility across the multitude of applications where modulating Raman scattering is desired.

Funder

Air Force Office of Scientific Research

Brookhaven National Laboratory

Office of Naval Research

Multidisciplinary University Research Initiative

Vannevar Bush Faculty Fellowship

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3