Abstract
Stimulated Raman scattering is a particularly robust nonlinearity, occurring in virtually every material because its spectral linewidth and associated frequency shift do not typically depend on phases or directions (i.e. wavevectors) of the interacting light beams. In amorphous materials such as glass fibers, Raman bandwidths are large, enabling its use as a broadband gain element. This ubiquity makes it a versatile means for achieving optical amplification or realizing lasers over a large range of pulsewidths at user-defined colors. However, this ease of deploying the effect also presents itself as a stubborn source of noise in fiber-based quantum sources or parasitic emission in fiber lasers. Here, we show that orbital angular momentum carrying light beams experiencing spin-orbit interactions yield novel phase-matching criteria for Raman scattering. This enables tailoring its spectral shape (by over half the Raman shift in a given material) as well as strength (by ∼ 100×) simply by controlling light’s topological charge – a capability of utility across the multitude of applications where modulating Raman scattering is desired.
Funder
Air Force Office of Scientific Research
Brookhaven National Laboratory
Office of Naval Research
Multidisciplinary University Research Initiative
Vannevar Bush Faculty Fellowship
Subject
Atomic and Molecular Physics, and Optics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献