High resolution and large measurement range voltage sensing based on an optoelectronic oscillator utilizing an unbalanced Mach–Zehnder interferometer

Author:

Wu BeileiORCID,Chen Hong,Wang MuguangORCID,Yin Bin1ORCID,Ma Jiuyang2,Zhao Xiaotong,Xiao Shiying,Cai Shiyi,Yan Fengping3

Affiliation:

1. Ocean University of China

2. China Academy of Railway Sciences Corporation Limited

3. Beijing Jiaotong University

Abstract

A voltage sensor with high resolution and large measurement range based on an optoelectronic oscillator (OEO) is proposed and experimentally demonstrated. The key component in the cavity to select the oscillating signal is a finite impulse response (FIR)-microwave photonic filter (MPF) which consists of a sinusoidal broadband optical signal, an unbalanced Mach–Zehnder interferometer (MZI), a section of dispersion compensating fiber, and a photodetector. The center frequency of the FIR-MPF is mainly determined by the free spectral range (FSR) of the FIR-MPF. In the lower arm of the MZI, a cylindrical piezoelectric ceramic (PZT) wrapped with a section of optical fiber acts as voltage sensing head. Due to the inverse piezoelectric effect of PZT, the variation of the voltage will cause radial deformation of the cylindrical PZT and then lead to the change of the FSR of the MZI, determining the shift of center frequency of FIR-MPF as well as the frequency of the oscillating signal of the OEO. Thus, by monitoring the shift of the oscillation frequency of the OEO using an electric spectrum analyzer or a digital signal processor, a high-speed interrogation and high-resolution voltage measurement can be realized. Additionally, in the proposed scheme, an infinite impulse response (IIR)-MPF consisting of a fiber ring resonator is cascaded with the FIR-MPF to ensure the single-mode oscillation of the OEO. The experimental results show that a total range of 1700 V voltage sensing from – 200 V to 1500 V is accomplished with the voltage sensitivity of 0.25 GHz/100 V and the resolution of 0.3 V. By adjusting the proportion of the length of single mode fiber between two branches of MZI, the impact of temperature can be greatly reduced. The proposed sensor offers advantages such as a large measurement range, high resolution, high-speed interrogation, and stability to temperature disturbances, making it highly suitable for sensing applications in smart grids.

Funder

Youth Innovation Team Project of High School in Shandong Province

Natural Science Foundation of Shandong Province

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3