Design and analysis of a compact micro-ring resonator signal emitter to reduce the uniformity-induced phase distortion and crosstalk in orbital angular momentum (OAM) division multiplexing

Author:

Jian Yin-He1,Chow Chi-Wai1ORCID

Affiliation:

1. National Chiao Tung University

Abstract

To improve the transmission capacity of an optical system, different multiplexing schemes have been proposed, such as optical time division multiplexing (OTDM), wavelength division multiplexing (WDM), polarization division multiplexing (PolDM), spatial division multiplexing (SDM), etc. One kind of SDM technique to boost the capacity is through modifying the spatial phase structure of an optical beam, which is known as the orbital angular momentum (OAM) division multiplexing. Moreover, the OAM signal emitter can be produced by using mature and high-yield silicon photonic (SiPh) technology, without the need of using bulky optical components or expensive spatial light modulator (SLM). The SiPh-based micro-ring resonator is one of the promising OAM signal emitter candidates, since it is simple, compact and easy to fabricate. However, the device performance is highly subjected to the structural design, and the uniformity-induced phase distortion will significantly degrade the purities of OAM beams; hence, introducing severe OAM signal crosstalk during the OAM division multiplexing. In this work, a compact SiPh-based micro-ring resonator type OAM signal emitter with detailed design parameters is presented and the output signal uniformity issue is comprehensively investigated. Two kinds of the structural optimization are performed by adjusting the angular grating width as well as the grating height. The results indicate that a significant improvement in output OAM beam uniformity can be achieved, with the attenuation factor being improved over 88% at the price of acceptable 4 ∼ 5% coupling efficiency reduction. The variations of the transmission and the uniformity induced by the fabrication error are also analyzed.

Funder

National Science and Technology Council, Taiwan

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3