Low-threshold random lasers enhanced by titanium nitride nanoparticles suspended randomly in gain solutions

Author:

Wan Yuan1,Wang Hongzhen1,Li Hongwen1,Ye Ruiqi1,Zhang Xinyu2,Lyu Jing2,Cai Yangjian1

Affiliation:

1. Shandong Normal University

2. Beijing Institute of Technology

Abstract

In this article, we report a low-threshold random laser enhanced by TiN nanoparticles (NPs) suspended randomly in gain solutions. Results show that the random laser with TiN NPs has a lower threshold than the random laser with TiO2 NPs and the underlying mechanisms are discussed in detail. The localized surface plasmon resonance of individual TiN NPs increases the pump efficiency and strengthens the fluorescence amplification efficiency of the DCM. The multiple scattering of integral TiN NPs extends the dwelling time of light in random systems, which provides more possibilities for the light amplification in the gain medium. Then, the random laser threshold as a function of the number density of TiN NPs is studied. Results show that the optimum number density of TiN NPs for the lowest-threshold random lasers is about 1.468 × 1012ml−1. When we substitute the ethanol solution with the nematic liquid crystal (NLC), the random laser threshold can be further decreased to 5.11 µJ/pulse, which is about 7.7 times lower than that of DCM dye solution with TiN NPs under the same conditions. These findings provide a cost-effective strategy for the realization of low-threshold random lasers with high-quality.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Innovation Group of Jinan

Local Science and Technology Development Project of the Central Government

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3