Abstract
Here, we focus on using composite pulses to realize high-robustness and high-fidelity coherent control in three-level quantum systems. We design the dynamic parameters (Rabi frequency and detuning) for three-level Hamiltonians for high-fidelity quantum state control using five well-known coherent control techniques including a composite adiabatic passage (CAP). Furthermore, we compare their performance against the Rabi frequency and systematic errors, and accordingly show that the CAP is the most robust against them. It features a broad range of high efficiencies above 99.9%. Thus, it provides an accurate approach for manipulating the evolution of quantum states in three-level quantum systems.
Funder
Natural Science Foundation of Anhui Province
National Natural Science Foundation of China
Subject
Atomic and Molecular Physics, and Optics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献