High-resolution spectroscopy of liquid water with dispersive atomic vapor prism cell

Author:

Leonov Boris S.ORCID,Randolph Robert T.ORCID,Rekhy Anuj,Dogariu Arthur1,Miles Richard B.1

Affiliation:

1. Princeton University

Abstract

This article presents an experimental demonstration of a spectroscopic method based on the dispersion of the scattering spectrum from laser-illuminated liquid water collected through a rubidium atomic vapor prism cell. Resonant absorption at 780 nm suppresses Mie/Rayleigh scattering and the steep gradients in refractive index near the 780 nm absorption lines separate Brillouin scattering from Raman scattering in liquid water. The opposing spatial displacements of the Stokes and Anti-Stokes shifted Brillouin peaks yield a measurement of their spectral shifts and thus the temperature or salinity of the water. Performance of the prism cell was mapped with a frequency tunable laser for frequency offsets from the center of the rubidium absorption feature of between −15 GHz and 15 GHz and at rubidium cell temperatures between 148 °C and 177 °C. The experimental results are compared with a numerical model and show good agreement with the scattering peak displacements within experimental uncertainties of probe frequency and cell temperature. In the present configuration, the minimum detectable frequency shift is estimated to be 15.5 MHz. Experiments were conducted in water demonstrating the utility of this method for the measurement of water temperature. Liquid water LiDAR was suggested as one of the possible applications for this method and several ways to improve the experimental setup and cell temperature stability were identified.

Funder

Office of Naval Research

National Aeronautics and Space Administration

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3