Abstract
In contrast to conventional emitters fashioned from traditional materials, tunable thermal emitters exhibit a distinct propensity to fulfill the demands of diverse scenarios, thereby engendering an array of prospects within the realms of communications, military applications, and control systems. In this paper, a tunable thermal emitter without continuous external excitation is introduced using Ge2Sb2Te5 (GST) and high-temperature-resistant material Mo. It is automatically optimized by inverse design with genetic algorithm (GA) to switch between different functions according to the object temperature to adapt to diverse scenarios. In “off” mode, the emitter orchestrates a blend of infrared (IR) stealth and thermal management. This is evidenced by average absorptivity values of 0.08 for mid-wave infrared (MIR, 3-5 µm), 0.19 for long-wave infrared (LIR, 8-14 µm), and 0.68 for the non-atmospheric window (NAW, 5-8 µm). Conversely, when confronted with high-temperature entities, the emitter seamlessly transitions to “on” mode, instigating a process of radiative cooling. This transformation is reflected in the augmented emissivity of the dual-band atmospheric window including MIR and LIR, attaining peak values of 0.96 and 0.97. This transition yields a cooling potential, quantified at 64 W/m2 at the ambient temperature of 25°C. In addition, our design employs a layered structure, which avoids complex patterned resonators and facilitates large-area fabrication. The emitter in this paper evinces robust insensitivity to polarization variations and the angle of incidence. We believe that this work will contribute to the development in the fields of dynamic tunability for IR stealth, dynamic radiative cooling systems, and thermal imaging.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Program for New Century Excellent Talents in University
Natural Science Foundation of Hunan Province
Foundation of NUDT
China Postdoctoral Science Foundation
Key research & development program of Guangxi
Science and Technology Major Project of Guangxi
the Postgraduate Scientific Research Innovation Project of Hunan Province
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献