Affiliation:
1. Rice University
2. Texas A&M University
3. Mississippi State University
Abstract
A field-ready, fiber-based high spatial sampling snapshot imaging spectrometer was developed for applications such as environmental monitoring and smart farming. The system achieves video rate frame transfer and exposure times down to a few hundred microseconds in typical daylight conditions with ∼63,000 spatial points and 32 spectral channels across the 470nm to 700nm wavelength range. We designed portable, ruggedized opto-mechanics to allow for imaging from an airborne platform. To ensure successful data collection prior to flight, imaging speed and signal-to-noise ratio was characterized for imaging a variety of land covers from the air. The system was validated by performing a series of observations including: Liriope Muscari plants under a range of water-stress conditions in a controlled laboratory experiment and field observations of sorghum plants in a variety of soil conditions. Finally, we collected data from a series of engineering flights and present reassembled images and spectral sampling of rural and urban landscapes
Funder
National Aeronautics and Space Administration
Subject
Atomic and Molecular Physics, and Optics
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献