Affiliation:
1. Huazhong University of Science and Technology
2. Aston University
Abstract
We have numerically and experimentally presented the diffraction characteristics of radiated tilted fiber grating (RTFG) in terms of the spectrum, bandwidth, degree of polarization, angular dispersion, and temperature crosstalk. The theoretical and experimental results have shown that the polarization property, bandwidth, and dispersion of RTFG highly depended on the tilt angle of RTFG, and the RTFG has ultra-low temperature crosstalk. We have simulated the transmission spectrum of the RTFG with different tilt angles (25°, 31°, 38°, 45°, and 54°), in which the results show that the larger tilt angle has the wider bandwidth. The RTFGs with the tilt angle of 25°, 31°, 38°, 45°, and 54° have the 3dB bandwidth of 110 nm, 144 nm, 182 nm, 242 nm, and 301 nm, respectively. Besides, the degree of polarization (DOP) of the radiated light from RTFG with the different tilt angles are 0.876, 0.944, 0.967, 0.998, and 0.970, respectively, and the RTFG has the maximum DOP at the tilt angle of 45°, which could be used as single-polarization diffraction device. The experimental results show that with further increase or decrease of the tilt angle, the DOP of radiated light of RTFG would decrease. Both the theoretical and experimental results show that the smaller tilt angle could greatly improve the diffraction angular dispersion of RTFG, in which the 25°, 31°, 38°, and 45° RTFG have the angular dispersion of 0.2288 °/nm, 0.1026 °/nm, 0.0714 °/nm, and 0.0528 °/nm, respectively. Due to the broad working bandwidth, the diffraction angles of RTFG have ultra-low temperature crosstalk, where -0.00042, -0.00054, -0.00064, and -0.00099 degree / °C at the tilt angle of 25°, 31°, 38°, and 45°. Finally, we have demonstrated a miniaturized spectrometer integrated by a 25° RTFG, which has a high spectral resolution of 0.08 nm. The proposed RTFG would be an ideal in-fiber diffraction device and widely applied in spectral analysis, space optical communication, and Lidar areas.
Funder
National Natural Science Foundation of China
National Science Fund for Distinguished Young Scholars
Subject
Atomic and Molecular Physics, and Optics