Affiliation:
1. Huazhong University of Science and Technology
2. Optics Valley Laboratory
Abstract
Optical coherence tomography based on time-stretch enables high frame rate and high-resolution imaging for the inertia-free wavelength-swept mechanism. The fundamental obstacle is still the acquisition bandwidth's restriction on imaging depth. By introducing dual-comb with slightly different repetition rates, the induced Vernier effect is found to be capable of relieving the problem. In our work, a dual-comb based time-stretch optical coherence tomography is proposed and experimentally demonstrated, achieving a 1.5-m imaging depth and 200-kHz A-scan rate. Moreover, about a 33.4-µm resolution and 25-µm accuracy are achieved. In addition, by adjusting the frequency detuning of the dual-comb, the A-scan rate can be further boosted to video-rate imaging. With enlarged imaging depth, this scheme is promising for a wide range of applications, including light detection and ranging.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Subject
Atomic and Molecular Physics, and Optics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献