Enhancing quantum sensing performance by optimizing the concentration and dephasing time of the NV ensemble in CVD-diamond

Author:

Wang Sixian,Bian GuodongORCID,Fan PengchengORCID,Li Mingxin,Li Bo1,Yuan Heng

Affiliation:

1. East China Normal University

Abstract

The negatively charged nitrogen−vacancy (NV) center ensembles in diamonds offer enormous potential for developing integrated sensors with an improved signal-to-noise ratio (SNR) and high sensitivity. However, the preparation and treatment of diamond samples with suitable NV concentrations and dephasing time have remained challenging. This work provided insight into the NV center formation mechanism and reconstruction via a comprehensive analysis of the concentration and dephasing time of a set of diamond samples treated by various parameters. By varying the electron irradiation dose and subsequent annealing duration, the conversion rate of nitrogen to NV is up to 18.45%, and the corresponding maximum NV concentration is 3.69 ppm. The dephasing time for all samples varies around 300 ns. The nitrogen-related NV center ensemble dephasing rate per unit density is 146.4 (ppm·ms)−1, indicating that the treatment did not substantially alter the paramagnetic spin environment around the NV center. This study not only offers support to exquisite sensitivities of NV-based sensors but also provides valuable experience for the preparation of unique properties of synthetic diamonds.

Funder

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Subject

Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3