Affiliation:
1. University of California San Diego
Abstract
Mode-division multiplexing (MDM) in chip-scale photonics is paramount to sustain data capacity growth and reduce power consumption. However, its scalability hinges on developing efficient and dynamic modal switches. Existing active modal switches suffer from substantial static power consumption, large footprints, and narrow bandwidth. Here, we present, for the first time, to the best of our knowledge, a novel multiport, broadband, non-volatile, and programmable modal switch designed for on-chip MDM systems. Our design leverages the unique properties of integrating nanoscale phase-change materials (PCM) within a silicon photonic architecture. This enables independent manipulation of spatial modes, allowing for dynamic, non-volatile, and selective routing to six distinct output ports. Crucially, our switch outperforms current dynamic modal switches by offering non-volatile, energy-efficient multiport functionality and excels in performance metrics. Our switch exhibits exceptional broadband operating bandwidth exceeding 70 nm, with low loss (< 1 dB), and a high extinction ratio (> 10 dB). Our framework provides a step forward in chip-scale MDM, paving the way for future green and scalable data centers and high-performance computers.
Funder
Kavli Foundation
Burroughs Wellcome Fund
Gordon and Betty Moore Foundation
American Society for Cell Biology
Air Force Office of Scientific Research
Arnold and Mabel Beckman Foundation