Target recognition and segmentation in turbid water using data from non-turbid conditions: a unified approach and experimental validation

Author:

Liu Luping1,Li Xin1,Yang Jianmin1,Tian Xinliang1,Liu Lei1

Affiliation:

1. SJTU Yazhou Bay Institute of Deep Sea Technology

Abstract

Semantic segmentation of targets in underwater images within turbid water environments presents significant challenges, hindered by factors such as environmental variability, difficulties in acquiring datasets, imprecise data annotation, and the poor robustness of conventional methods. This paper addresses this issue by proposing a novel joint method using deep learning to effectively perform semantic segmentation tasks in turbid environments, with the practical case of efficiently collecting polymetallic nodules in deep-sea while minimizing damage to the seabed environment. Our approach includes a novel data expansion technique and a modified U-net based model. Drawing on the underwater image formation model, we introduce noise to clear water images to simulate images captured under varying degrees of turbidity, thus providing an alternative to the required data. Furthermore, traditional U-net-based modified models have shown limitations in enhancing performance in such tasks. Based on the primary factors underlying image degradation, we propose a new model which incorporates an improved dual-channel encoder. Our method significantly advances the fine segmentation of underwater images in turbid media, and experimental validation demonstrates its effectiveness and superiority under different turbidity conditions. The study provides new technical means for deep-sea resource development, holding broad application prospects and scientific value.

Funder

Major Projects of Strategic Emerging Industries in Shanghai

Fundamental Research Funds for the Central Universities

Institute of Marine Equipment of Shanghai Jiao Tong University

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3