Tailorable stimulated Brillouin scattering in a partially suspended aluminium nitride waveguide in the visible range

Author:

Li Peng1ORCID,Ou Jun-Yu1ORCID,Mashanovich Goran Z.1,Yan Jize1

Affiliation:

1. University of Southampton

Abstract

Stimulated Brillouin scattering (SBS) has been widely applied in narrow line-width laser, microwave filters, optical gyroscopes, and other fields. However, most research is limited within near-infrared to mid-infrared range. This is due to the limited transparent window in most materials, such as silicon and germanium. Aluminium nitride (AlN) is a novel III-V material with a wide transparent window from 200 nm and an appropriate refractive index to confine the light. In this paper, we first validate the full-vectorial formalism to calculate SBS gain based on the measured results from a silicon platform. Compared to previous research, our model achieves higher accuracy in terms of frequency, Q factor, as well as Brillouin gain coefficient without modifying the waveguide width. It also reveals the importance of matching rotation matrix and crystalline coordinate system. Then, we investigate the SBS in a partially suspended AlN waveguide at 450 nm based on the validated method. It shows a wide tunability in frequency from 16 GHz to 32 GHz for forward SBS and a range from 42 GHz to 49 GHz for backward SBS. We numerically obtain the value of Brillouin gain of 1311 W−1m−1 when Q factor is dominated by anchor loss for forward SBS of transverse electric mode. We also find out that in the case for forward SBS of transverse-magnetic mode, anchor loss could be greatly suppressed when the node point of the selected acoustic mode matches with the position of pillar anchor. Our findings, to the best of our knowledge, pave a new way to obtain Brillouin-related applications in integrated photonic circuit within the visible range.

Funder

Engineering and Physical Sciences Research Council

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3