Affiliation:
1. National University of Defense Technology
Abstract
Rotational motion of the optically trapped particle is a topic of enduring interest, while the changes of angular velocity in one rotation period remain largely unexplored. Here, we proposed the optical gradient torque in the elliptic Gaussian beam, and the instantaneous angular velocities of alignment and fluctuant rotation of the trapped non-spherical particles are investigated for the first time. The fluctuant rotations of optically trapped particles are observed, and the angular velocity fluctuated twice per rotation period, which can be used to determine the shape of trapped particles. Meanwhile, a compact optical wrench is invented based on the alignment, and its torque is adjustable and is larger than the torque of a linearly polarized wrench with the same power. These results provide a foundation for precisely modelling the rotational dynamics of optically trapped particles, and the presented wrench is expected to be a simple and practical micro-manipulating tool.
Funder
National Natural Science Foundation of China
Subject
Atomic and Molecular Physics, and Optics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献