Effect of laser repetition rate on the fluorescence characteristic of a long-distance femtosecond laser filament

Author:

Xue Jiayun1,Zhang Nan1ORCID,Guo Lanjun2,Zhang Zhi2ORCID,Qi Pengfei2ORCID,Sun Lu1,Gong Cheng2ORCID,Lin Lie2,Liu Weiwei1ORCID

Affiliation:

1. Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology

2. Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology

Abstract

In this paper, the effect of the laser repetition rate on the long-distance femtosecond laser filament in air is investigated by measuring the fluorescence characteristic of the filament. A femtosecond laser filament emits fluorescence due to the thermodynamical relaxation of the plasma channel. Experimental results show that as the repetition rate of femtosecond laser increases, the fluorescence of the filament induced by a single laser pulse weakens, and the position of the filament moves away from the focusing lens. These phenomena may be attributed to the slow hydrodynamical recovery process of air after being excited by a femtosecond laser filament, whose characteristic time is on the millisecond time scale and comparable to the inter-pulse duration of the femtosecond laser pulse train. This finding suggests that at a high laser repetition rate, to generate an intense laser filament, the femtosecond laser beam should scan across the air to eliminate the adverse effect of slow air relaxation, which is beneficial to laser filament remote sensing.

Funder

National Key Research and Development Program of China

Fundamental Research Funds for the Central Universities

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3