Optical pulling force on dielectric particles via metallic slab surface plasmon excitation: a comparison between transmission and reflection schemes

Author:

Ferrari H.1ORCID,Herrero V.1ORCID,Cuevas M.1

Affiliation:

1. Universidad Austral

Abstract

In this Letter, a simple structure formed by a metallic thin layer covering a high-index substrate is used to design an optical tweezer. Owing to the interaction between the field scattered by the particle with an incident plane wave and the proposed structure, a pulling or attractive component of the optical force emerges. This component results in enhancement thanks to the surface plasmons (SPs) excitation arising from the elliptical polarization of the induced dipole moment on the particle. To further exploit the versatility of the proposed approach, we analyze two basic configurations: the reflection scheme, for which the plane wave impinges from the side where the particle is placed; and the transmission scheme, for which the incidence is made from the substrate side. Our results show that the intensity of the pulling force in the reflection scheme and for finite thickness metal layer reaches values exceeding more than twice those provided by a single metallic interface. We also demonstrate that the transmission scheme is more favorable than the reflection scheme for enhancing pulling force intensities. Our contribution can be valuable for realizing simple plasmonic schemes for improving the pulling force via interactions between the nano-particle and SP fields.

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3