Effective linewidth compression of a single-longitudinal-mode fiber laser with randomly distributed high scattering centers in the fiber induced by femtosecond laser pulses

Author:

Feng TingORCID,Su Jing,Wei Da,Li Dongyuan,Li Changheng,Yan Fengping1,Steve Yao X.ORCID

Affiliation:

1. Beijing Jiaotong University

Abstract

Femtosecond lasers can be used to create many functional devices in silica optical fibers with high designability. In this work, a femtosecond laser-induced high scattering fiber (HSF) with randomly distributed high scattering centers is used to effectively compress the linewidth of a fiber laser for the first time. A dual-wavelength, single-longitudinal-mode (SLM) erbium-doped fiber laser (EDFL) is constructed for the demonstration, which is capable of switching among two single-wavelength operations and one dual-wavelength operation. We find that the delayed self-heterodyne beating linewidth of the laser can be reduced from >1 kHz to <150 Hz when the length of the HSF in the laser cavity increases from 0 m to 20 m. We also find that the intrinsic Lorentzian linewidth of the laser can be compressed to several Hz using the HSF. The efficiency and effectiveness of linewidth reduction are also validated for the case that the laser operates in simultaneous dual-wavelength lasing mode. In addition to the linewidth compression, the EDFL shows outstanding overall performance after the HSF is incorporated. In particular, the optical spectrum and SLM lasing state are stable over long periods of time. The relative intensity noise is as low as <−150 dB/Hz@>3 MHz, which is very close to the shot noise limit. The optical signal-to-noise ratios of >85 dB for single-wavelength operation and >83 dB for dual-wavelength operation are unprecedented over numerous SLM fiber lasers reported previously. This novel method for laser linewidth reduction is applicable across gain-medium-type fiber lasers, which enables low-cost, high-performance, ultra-narrow linewidth fiber laser sources for many applications.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hebei Province

Funding of Hebei “333 talent project”

Science and Technology Research Project in Colleges and Universities of Hebei Province

Hebei Provincial Innovation Ability Promotion Project

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3