Comparison of a two-wavelength pyrometer system and spectral pyrometry for high-temperature measurements

Author:

Aljohani Sama Badr1,Alshunaifi Ibrahim A.,Alqahtani Naif B.,Alfarraj Bader A.ORCID

Affiliation:

1. King Abdulaziz and his Companions Foundation for Giftedness and Creativity (Mawhiba)

Abstract

A pyrometer system is an optically passive, non-intrusive method that uses thermal radiation law to determine temperature. It combines electronic and optical instruments to detect low-level signals of radiation measurements. Surface high-temperature measurements are successfully obtained using a two-wavelength pyrometer system. This study used a pyrometer system to achieve high stability, minimize errors due to changing emissivity, and remove background noise from the radiation measurement for surface high-temperature measurements. Temperature measurements were also obtained from Planck’s model, and the results were compared with logarithmic assumption. The precision of these measurements is improved through variable optimization of the instruments, validation of the data, and calibration of the pyrometer system. The 16 temperature measurements were obtained (800–1600°C temperature measurement range) with a correlation coefficient above 97%. The response time between temperature readings is within 785 µs. Furthermore, the high-temperature measurements were obtained with higher stability (±2.99C at 1600°C) and less error (less than 2.29% for Si sensor). In addition, the error of the temperature measurement was reduced from 5.33% to 0.86% at 850°C by using Planck’s model compared with using logarithmic assumption. A cooling system temperature is also optimized to reduce the error temperature reading. It was found to be at 10°C that the uncertainty was reduced from 2.29% at ambient temperature to 1.53% at 1600°C. The spectral pyrometry system was also used in comparison with the two-wavelength pyrometer system to confirm that the calibration curves of the spectral pyrometry can be used to determine temperature measurements.

Funder

King Abdulaziz City for Science and Technology

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3