Wide angle anapole excitation in stacked resonators

Author:

Vennberg FelixORCID,Angelsten Arvid,Anttu Nicklas1ORCID,Ravishankar Ajith P.ORCID,Anand SrinivasanORCID

Affiliation:

1. Åbo Akademi University

Abstract

In the search for resonances with high localized field strengths in all-dielectric nanophotonics, novel states such as anapoles, hybrid anapoles and bound states in the continuum have been realized. Of these, the anapoles are the most readily achievable. Interaction between vertically stacked disks supporting anapole resonances increases the field localization further. When fabricated from materials with high non-linear coefficients, such stacked disk pillars can be used as non-linear antennas. The excitation of such 3D pillars often includes off normal incidence when using focusing optics. Therefore, it is important to evaluate the angular and polarization response of such pillars. In the paper we fabricate pillars with three AlGaAs disks in a stack separated by stems of GaAs. The angular and polarization responses are evaluated experimentally with integrating sphere measurements and numerically through simulation, multipole decomposition and quasi-normal modes. We find that the stacked geometry shows hybridized anapole excitation for a broad span of incidence angles, with tunability of the individual multipolar response up to octupoles, including an electric octupole anapole, and we show how the average enhanced confined energy varies under angled excitation. The results show that the vertical stacked geometry can be used with highly focusing optics for efficient in-coupling to the hybridized anapole.

Funder

Vetenskapsrådet

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3