Affiliation:
1. China Three Gorges University
2. China Yangtze Power Renewables Co., Ltd.
Abstract
Passive daytime radiative cooling (PDRC) as a zero-energy consumption cooling method has broad application potential. Common commercial crystalline silicon (c-Si) solar cell arrays suffer working efficiency loss due to the incident light loss and overheating. In this work, a radiative cooler with PDMS (polydimethylsiloxane) film and embedded SiO2 microparticles was proposed to use in silicon solar cells. Both anti-reflection and radiative cooling performance can be improved through numerical parametric study. For the best performing of PDMS/SiO2 radiative cooler, the thickness of PDMS layer, volume fraction and radius of the embedded SiO2 particles have been determined as 55 µm, 8% and 500 nm, respectively. 94% of emissivity in first atmospheric window band (8–13 µm) for radiative cooling and 93.4% of solar transmittance at the crystalline silicon absorption band (0.3–1.1 µm) were achieved. We estimated that the PDMS/SiO2 radiative cooler can lower the temperature of a bare c-Si solar cell by 9.5°C, which can avoid 4.28% of efficiency loss. More incident light can enter and be utilized by silicon layer to enhance the efficiency of the solar cells. The proposed difunctional radiative cooling coating may become guidance for next generation encapsulation of crystalline silicon solar cells.
Funder
Natural Science Foundation of Hubei Province
111 Project
Excellent Dissertation of China Three Gorges University
Subject
Atomic and Molecular Physics, and Optics
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献