Affiliation:
1. The Hong Kong Polytechnic University
Abstract
We propose a new approach for high-fidelity free-space optical data transmission through dynamic smoke using a series of 2D arrays of random numbers as information carriers. Data to be transmitted in dynamic smoke environment is first encoded into a series of 2D arrays of random numbers. Then, the generated 2D arrays of random numbers and the fixed reference pattern are alternately embedded into amplitude-only spatial light modulator, and are illuminated to propagate through dynamic smoke in free space. Real-time optical thickness (OT) is calculated to describe temporal change of the properties of optical wave in dynamic smoke environment, and transmission noise and errors caused by dynamic smoke are temporally suppressed or corrected. Optical experiments are conducted to analyze the proposed method using different experimental parameters in various scenarios. Experimental results fully verify feasibility and effectiveness of the proposed method. It is experimentally demonstrated that irregular analog signals can always be retrieved with high fidelity at the receiving end by using the proposed method, when average optical thickness (AOT) is lower than 2.5. The proposed method also shows high robustness against dynamic smoke with different concentrations. The proposed method could open up an avenue for high-fidelity free-space optical data transmission through dynamic smoke.
Funder
Basic and Applied Basic Research Foundation
Hong Kong Research Grants Council
Hong Kong Polytechnic University
Subject
Atomic and Molecular Physics, and Optics
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献