Affiliation:
1. Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques
2. Peng Cheng Laboratory
3. Guangzhou City University of Technology
Abstract
A Ga hybridization strategy is proposed for simultaneously enhancing the near-infrared activity and extending the bandwidth of Bi-activated photonic glass. Systematic studies on the near-infrared optical responses of Ga/Bi and Al/Bi co-doped silica glasses are performed. It is interesting to note that Ga/Bi co-doped glasses have a similar near-infrared emission center to Al/Bi co-doped glass, while the former is more effective in improving near-infrared activity. The different luminescence mechanisms of Ga/Bi and Al/Bi co-doped silica glasses are elucidated, and the corresponding microstructure–optical response relationship is discussed. In addition, the Ga/Bi co-doped silica optical fiber is successfully prepared, and the principal fiber amplifier device is fabricated. Furthermore, amplified spontaneous emission and broadband on-off gain are realized. The results suggest that Ga-hybridized Bi-activated photonic glass is a promising gain material for broadband fiber amplifiers.
Funder
National Key Research and Development Program of China
National Science Fund for Distinguished Young Scholars
Key R&D Program of Guangzhou
Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program
Foundation of State Key Laboratory of Reactor System Design Technology
Large Scientific Facility Open Subject of Songshan Lake, Dongguan, Guangdong
Subject
Atomic and Molecular Physics, and Optics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献