Fourier ptychographic microscopy image enhancement with bi-modal deep learning

Author:

Bouchama Lyes1ORCID,Dorizzi Bernadette,Thellier Marc2,Klossa Jacques1,Gottesman YaneckORCID

Affiliation:

1. TRIBVN/T-life

2. Sorbonne Université

Abstract

Digital pathology based on a whole slide imaging system is about to permit a major breakthrough in automated diagnosis for rapid and highly sensitive disease detection. High-resolution FPM (Fourier ptychographic microscopy) slide scanners delivering rich information on biological samples are becoming available. They allow new effective data exploitation for efficient automated diagnosis. However, when the sample thickness becomes comparable to or greater than the microscope depth of field, we report an observation of undesirable contrast change of sub-cellular compartments in phase images around the optimal focal plane, reducing their usability. In this article, a bi-modal U-Net artificial neural network (i.e., a two channels U-Net fed with intensity and phase images) is trained to reinforce specifically targeted sub-cellular compartments contrast for both intensity and phase images. The procedure used to construct a reference database is detailed. It is obtained by exploiting the FPM reconstruction algorithm to explore images around the optimal focal plane with virtual Z-stacking calculations and selecting those with adequate contrast and focus. By construction and once trained, the U-Net is able to simultaneously reinforce targeted cell compartment visibility and compensate for any focus imprecision. It is efficient over a large field of view at high resolution. The interest of the approach is illustrated considering the use-case of Plasmodium falciparum detection in blood smear where improvement in the detection sensitivity is demonstrated without degradation of the specificity. Post-reconstruction FPM image processing with such U-Net and its training procedure is general and applicable to demanding biological screening applications.

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3