High dynamic range 3D shape measurement based on crosstalk characteristics of a color camera

Author:

Wang Zhangying1,Li Kui1,Gao Nan,Meng Zhaozong,Zhang ZonghuaORCID

Affiliation:

1. Hebei University of Technology

Abstract

Fringe projection profilometry (FPP) has been widely used in many fields due to its fast speed, high accuracy and full-field characteristics. However, it is still a challenging problem to deal with high dynamic range (HDR) objects for traditional FPP, which utilizes a single exposure time or a single projection intensity. Overexposure will occur in areas with large reflectivity, which exceeds the maximum capturing capacity of camera sensors, resulting in the failure to obtain the accurate intensity, absolute phase and three-dimensional (3D) data. In this paper, a uniform blue image is projected to divide object surface into three areas with different reflectivity by using different intensity responses of RGB channels of color images. Crosstalk coefficient function is applied to obtain intensity of overexposed areas, and then the optimal exposure time of areas is calculated by the linear photometric response of the camera. Finally, three sets of blue fringe patterns with optimal exposure time are synthesized into the fused HDR images to calculate the absolute phase. Experimental results confirm that the proposed method can accurately measure HDR objects with large variation range of reflectivity.

Funder

S & T Program of Hebei

the State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology

Post-doctoral Funded Scientific Research Projects in Hebei Province

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3