Generalized figure of merit for plasmonic dip measurement-based surface plasmon resonance sensors

Author:

Treebupachatsakul Treesukon1,Boosamalee Apivitch1,Chaithatwanitch Kamejira1,Pechprasarn Suejit2ORCID

Affiliation:

1. King Mongkut's Institute of Technology

2. Rangsit University

Abstract

We propose a theoretical framework to analyze quantitative sensing performance parameters, including sensitivity, full width at half maximum, plasmonic dip position, and figure of merits for different surface plasmon operating conditions for a Kretschmann configuration. Several definitions and expressions of the figure of merit have been reported in the literature. Moreover, the optimal operating conditions for each figure of merit are, in fact, different. In addition, there is still no direct figure of merit comparison between different expressions and definitions to identify which definition provides a more accurate performance prediction. Here shot-noise model and Monte Carlo simulation mimicking the noise behavior in SPR experiments have been applied to quantify standard deviation in the SPR plasmonic dip measurements to evaluate the performance responses of the figure of merits. Here, we propose and formulate a generalized figure of merit definition providing a good performance estimation to the detection limit. The measurement parameters employed in the figure of merit formulation are identified by principal component analysis and machine learning. We also show that the proposed figure of merit can provide a good estimation for the surface plasmon resonance performance of plasmonic materials, including gold and aluminum, with no need for a resource-demanding computation.

Funder

King Mongkut's Institute of Technology Ladkrabang

Rangsit University

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3