Affiliation:
1. Ningbo University
2. Key Laboratory of Photoelectric Detection Materials and Devices of Zhejiang Province
3. Ningbo Institute of Oceanography
4. Hangzhou Institute of Optics and Fine Mechanics
Abstract
The gradient refractive index (GRIN) lens is widely used in the visible band, but it is still elusive in the infrared band. In this paper, we propose a new method of fabricating chalcogenide GRIN by spark plasma sintering (SPS) technology based on powder stacking and sintering thermal diffusion. We replaced Se in Ge11.5As24Se64.5 glass with S and prepared several Ge11.5As24Se(64.5-x)Sx glasses as infrared transmission GRIN materials. The maximum refractive index difference (Δn) of the matrix glass is 0.18. The effects of heat treatment temperature and time on diffusion depth and concentration-dependent thermal diffusion coefficient were investigated. The diffusion depth of 100 µm was demonstrated under the condition of 400 °C-48 h by this method. The thickness of the glass layer can be well controlled by powder stacking. The obtained GRIN glass is highly transparent in the near- and mid-infrared wavelength region.
Funder
NSAF Joint Fund
National Natural Science Foundation of China
Key R&D program of Zhejiang Province, China
Natural Science Foundation of Ningbo
K. C. Wong Magna Fund in Ningbo University
Natural Science Foundation of Zhejiang Province
Subject
Electronic, Optical and Magnetic Materials
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献