LSTM-based real-time signal quality assessment for blood volume pulse analysis

Author:

Gao HaoyuanORCID,Zhang Chao,Pei Shengbing,Wu Xiaopei

Abstract

Remote photoplethysmogram (rPPG) is a low-cost method to extract blood volume pulse (BVP). Some crucial vital signs, such as heart rate (HR) and respiratory rate (RR) etc. can be achieved from BVP for clinical medicine and healthcare application. As compared to the conventional PPG methods, rPPG is more promising because of its non-contacted measurement. However, both BVP detection methods, especially rPPG, are susceptible to motion and illumination artifacts, which lead to inaccurate estimation of vital signs. Signal quality assessment (SQA) is a method to measure the quality of BVP signals and ensure the credibility of estimated physiological parameters. But the existing SQA methods are not suitable for real-time processing. In this paper, we proposed an end-to-end BVP signal quality evaluation method based on a long short-term memory network (LSTM-SQA). Two LSTM-SQA models were trained using the BVP signals obtained with PPG and rPPG techniques so that the quality of BVP signals derived from these two methods can be evaluated, respectively. As there is no publicly available rPPG dataset with quality annotations, we designed a training sample generation method with blind source separation, by which two kinds of training datasets respective to PPG and rPPG were built. Each dataset consists of 38400 high and low-quality BVP segments. The achieved models were verified on three public datasets (IIP-HCI dataset, UBFC-Phys dataset, and LGI-PPGI dataset). The experimental results show that the proposed LSTM-SQA models can effectively predict the quality of the BVP signal in real-time.

Funder

Natural Science Foundation of Anhui Province

University Natural Science Research Project of Anhui Province

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Biotechnology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3