Affiliation:
1. Pohang University of Science and Technology
2. Max Planck POSTECH/KOREA Research Initiative
Abstract
High-intensity X-ray free-electron laser (XFEL) beams create transient and non-equilibrium dense states of matter in solid-density targets. These states can be used to develop atomic X-ray lasers with narrow bandwidth and excellent longitudinal coherence, which is not possible with current XFEL pulses. An atomic kinetics model is used to simulate the population dynamics of atomic inner-shell vacancy states in Mg, Al, and Si, revealing the feasibility of population inversion between K-shell and L-shell vacancy states. We also discuss the gain characteristics of these states implying the possibility of atomic X-ray lasers based on inner-shell vacancy states in the 1.5 keV region. The development of atomic X-ray lasers could have applications in high-resolution spectroscopy and nonlinear optics in the X-ray region.
Subject
Atomic and Molecular Physics, and Optics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献