Affiliation:
1. Zhejiang University City College
2. Research Center for Intelligent Chips and Devices, Zhejiang Lab
3. RMIT University
4. Zhejiang University
Abstract
Narrow bandpass filters (NBFs), which are designed to accept a narrow wavelength range and simultaneously reject a much wider range, show great potential in applications such as spectral imaging, lidar detection, fluorescence microscopy, and others. In this paper, we propose and numerically simulate NBF technology for infrared (IR) optical applications. The filter is a combination of plasmonic nanostructures and improved induced transmission layers. The operating wavelength range is from 1360 to 5000 nm [short wave mid-infrared radiation(SWM-IR)], with a FWHM of less than 10 nm and maximum optical density of around 10. Therefore, our SWM-IR hybrid filter can distinguish much smaller differences in terms of spectrum information and reduce the background noise level even if using an optical amplifier.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Zhejiang Province
Subject
Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献