Design of boadband THz multi-beam splitting metasurface

Author:

Teng Yan,Wang Tengyu,Li ChunORCID,Huang Zhengwei,Jiang Ling

Abstract

Generating multiple local oscillator (LO) beams by beam splitters is a crucial aspect of large heterodyne array receivers operating at terahertz (THz) frequencies, with over 100 pixels. Metasurfaces have received considerable attention due to their unique and flexible wavefront modulation capabilities. Nevertheless, the design of beam-splitting metasurfaces faces significant challenges in increasing the number of diffraction beams, improving power efficiency, and achieving greater homogeneity. A SA-GS-based design model for beam-splitting metasurfaces is proposed to achieve multi-beam with high power efficiency and homogeneity. As a proof of concept, we have designed and optimized a 16-beam splitting metasurface from 0.82 THz to 1.6 THz. The objective is to develop large-pixel THz multi-beam heterodyne array receivers and optical systems. The number of beams is also extended to 100-, 144-, 225-, and 289-beam configurations, with power efficiencies of 93.55%, 93.92%, 96.01%, and 96.18% at 0.85 THz, respectively. Moreover, the main beams exhibit excellent homogeneity. This model can be employed in the design of multi-beam metasurfaces with variable deflection angles and intensity ratios. Finally, the multi-beam splitting metasurface is fabricated, and the experimental measurement agrees with the simulation. This work presents an effective approach for the inverse design of beam splitters or holographic imaging devices.

Funder

National Natural Science Foundation of China

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3