Laser-Assisted Synthesis and Processing of 2D Quantum Materials

Author:

Mahjouri-Samani Masoud,Azam Nurul,Jaiswal Suman,Ahmadi Zabihollah,Fathi-hafshejani Parvin

Abstract

Two-dimensional (2D) materials such as transition metal dichalcogenides (TMDCs) have recently emerged as an exciting class of quantum materials that can enable technological advancement in various fields, including electronics, optoelectronics, and photonics. Therefore, there is a significant demand for high-quality crystal growth and wafer-scale integration methods to transition their exciting properties from lab to fab. Here, I will discuss some of the laser-based synthesis techniques we have developed to control the growth of both single-crystalline 2D flakes and large-scale polycrystalline 2D films for wafer-scale electronics. I will report the synthesis of the highest-quality single-crystalline monolayers using the laser-assisted vapor phase growth method directly from stoichiometric powders. I will particularly highlight our condensed phase growth approach compatible with direct laser writing as well as the conventional lithography and device integration technologies. Patterned integration of 2D materials on both flexible and rigid substrates will be demonstrated. The crystal structures, quality, and device performance will also be discussed and compared with the common growth methods. These laser-based approaches provide unique synthesis and processing opportunities that are not easily accessible through conventional methods.

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3