Affiliation:
1. Zhejiang University
2. The Hong Kong Polytechnic University
3. Royal Institute of Technology
Abstract
Improving the spectrum efficiency (SE) is an effective method to further enhance the data rate of bandwidth-limited underwater wireless optical communication (UWOC) systems. Non-orthogonal frequency-division multiplexing (NOFDM) with a compression factor of 0.5 can save half of the bandwidth without introducing any inter-carrier-interference (ICI) only if the total number of subcarriers is large enough, and we termed it as half-spectrum OFDM (HS-OFDM). To the best of our knowledge, this is the first reported work on a closed-form HS-OFDM signal in the discrete domain from the perspective of a correlation matrix. Due to the special mathematical property, no extra complex decoding algorithm is required at the HS-OFDM receiver, making it as simple as the conventional OFDM receiver. Compared with traditional OFDM, HS-OFDM can realize the same data rate, but with a larger signal-to-noise ratio (SNR) margin. To fully use the SNR resource of the communication system, we further propose a digital power division multiplexed HS-OFDM (DPDM-HS-OFDM) scheme to quadruple the SE of conventional OFDM for the bandwidth-starved UWOCs. The experimental results show that HS-OFDM can improve the receiver sensitivity by around 4 dB as opposed to conventional 4QAM-OFDM with the same data rate and SE. With the help of the DPDM-HS-OFDM scheme, the data rate of multi-user UWOC can reach up to 4.5 Gbps under the hard-decision forward error correction (HD-FEC) limit of a bit error rate (BER) of 3.8×10−3. Although there is some performance degradation in comparison with single-user HS-OFDM, the BER performance of multi-user DPDM-HS-OFDM is still superior to that of conventional single-user 4QAM-OFDM. Both single-user HS-OFDM and multi-user DPDM-HS-OFDM successfully achieve 2 Gbps/75 m data transmission, indicating that the DPDM-HS-OFDM scheme is of great importance in bandwidth-limited UWOC systems and has guiding significance to underwater wireless optical multiple access.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Zhejiang Province
Natural Science Foundation of Ningbo
Ningbo Science and Technology Project