High-precision calculation and experiments on the thermal blooming of high-energy lasers

Author:

Zhang Qi1,Hu Qili2,Wang Hongyan1,Hu Ming1,Xu Xingyu1,Wu Jingjing1,Hu Lifa1

Affiliation:

1. Jiangsu provincial research center of light industry opto-electronic engineering and technology

2. Key Laboratory of Electro-Optical Countermeasures Test & Evaluation Technology, Luoyang

Abstract

Thermal blooming (TB) is one of the important factors affecting the quality of high-energy laser beams. Reasonable simulation of thermal blooming is important to the application of a high-energy laser. However, reported investigations on TB simulation are mainly based on one method, such as the perturbation method or the phase screen method, which often leads to obvious errors in some conditions. In the paper, the reasonable ranges of optical generalized distortion parameters for both methods are determined based on the reported experimental data, which solves the problem of accurate TB simulations for the first time. In addition, the dynamic effect of thermal blooming is also calculated. Finally, the formula method is presented to extract the phase of thermal blooming distortion. We then use LC-SLM (Liquid crystal spatial light modulator) to emulate thermal blooming effect in the lab. The experimental results are more consistent with the numerical simulation results than conventional phase extraction methods. Our work provides a quantitatively and programmable way to accurately simulate TB with LC-SLM in the lab.

Funder

National Natural Science Foundation of China

the Fund for Key Laboratory of Electro-Optical Countermeasures Test & Evaluation Technology

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3