Abstract
We propose and numerically demonstrate a scheme for physical-layer security based on chaotic phase encryption, where the transmitted carrier signal is used as the common injection for chaos synchronization, so there is no need for additional common driving. To ensure privacy, two identical optical scramblers consisting of a semiconductor laser and a dispersion component are used to observe the carrier signal. The results show that the responses of the optical scramblers are highly synchronized but are not synchronized with the injection. By properly setting the phase encryption index, the original message can be well encrypted and decrypted. Moreover, the legal decryption performance is sensitive to the parameter mismatch, since it can degrade the synchronization quality. A slight drop in synchronization induces an evident deterioration in decryption performance. Therefore, without perfectly reconstructing the optical scrambler, the original message cannot be decoded by an eavesdropper.
Funder
National Natural Science Foundation of China
Foundation of Jiangsu Provincial Double-Innovation Doctor Program
Nanjing University of Posts and Telecommunications Start Funding
1311 Talent Plan of NJUPT
Subject
Atomic and Molecular Physics, and Optics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献