Theoretical modeling and investigations of lossy mode resonance prism sensor based on TiO2 film

Author:

Zhang Yizhuo,Zhang Pengyu,Zhao MaolinORCID,Li Zhiqi,Xu Danping,Tong Chenghao,Shen Jian,Li Chaoyang

Abstract

The optical sensor based on lossy mode resonance can overcome the limitations of traditional surface plasmon resonance sensors and work under TE and TM polarized light. In this paper, an LMR sensor theoretical model with the configuration of prism/matching layer/lossy layer/sensing layer is proposed, which is based on the principle of attenuated total reflection. By using TiO2 film as the lossy layer and LiF film as the matching layer, the resonance signal under angle interrogation is effectively improved. One of the advantages of the proposed sensor is that the detection range and detection accuracy are dynamically adjustable, which provides additional degrees of freedom in the design and use of the device. The structural parameters (film thickness, layer refractive index) affecting the resonance signal have been investigated based on the electric field distribution at resonance and the coupled mode theory. The LMR signal under TE and TM polarization can be switched by changing the thickness ratio of the matching layer and the lossy layer. All possible combinations of film thicknesses are given as a reference for the design of the LMR prism sensor based on TiO2 film. Under proper thickness combination, the proposed sensor is capable of detecting the medium with refractive index ranging from 1.32 ∼ 1.47, with a sensitivity range of 34 ∼ 148 °/RIU under angle interrogation and a maximum value of 192 RIU−1 for FOM under TM polarization. We hope these investigations can prove the advantages of LMR prism sensors and provide guidance for the experimental implementation of LMR prism sensors in the future.

Funder

Finance Science and Technology Project of Hainan Province

Natural Science Foundation of Hainan Province

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3