Abstract
A 1064-nm femtosecond fiber chirped pulse amplification (FCPA) laser system based on a single-stage double-pass Yb-doped rod-type photonic crystal fiber (PCF) amplifier was demonstrated with a pulse repetition rate of 500 kHz, which was specially designed for expected conversion efficiency enhancement of a 10.8 eV source. With a series of Yb:fiber power amplifiers, the average output power was boosted to approximately 35 W. Further, using a transmission gratings-based pulse compressor, an average output power of 27.5 W was achieved, corresponding to a pulse energy of 55 µJ and a compression efficiency of 78.6%. The shortest pulse duration was optimized to be 204 fs, which was also accompanied by obvious pedestal. A pulse duration of 336 fs was also obtained when the pulse quality was at a top priority. To the best of our knowledge, this is the first demonstration of high-repetition-rate high-pulse-energy 1064-nm, instead of 1035-nm, femtosecond laser, based on commercially available Yb-doped rod-type PCF amplifier.
Funder
National Natural Science Foundation of China
Key Technology Research and Development Program of Shandong
Natural Science Foundation of Shandong Province
China Postdoctoral Science Foundation
Subject
Atomic and Molecular Physics, and Optics
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献