High-repetition-rate, 50-µJ-level, 1064-nm, CPA laser system based on a single-stage double-pass Yb-doped rod-type fiber amplifier

Author:

Zhao Qikai1,Gao GuanGuang1,Cong Zhenhua1,Zhang Zhen1,Liu Gaoyou1ORCID,Liu Zhaojun1,Zhang Xingyu1,Zhao Zhigang12

Affiliation:

1. Shandong University

2. Shanxi University

Abstract

A 1064-nm femtosecond fiber chirped pulse amplification (FCPA) laser system based on a single-stage double-pass Yb-doped rod-type photonic crystal fiber (PCF) amplifier was demonstrated with a pulse repetition rate of 500 kHz, which was specially designed for expected conversion efficiency enhancement of a 10.8 eV source. With a series of Yb:fiber power amplifiers, the average output power was boosted to approximately 35 W. Further, using a transmission gratings-based pulse compressor, an average output power of 27.5 W was achieved, corresponding to a pulse energy of 55 µJ and a compression efficiency of 78.6%. The shortest pulse duration was optimized to be 204 fs, which was also accompanied by obvious pedestal. A pulse duration of 336 fs was also obtained when the pulse quality was at a top priority. To the best of our knowledge, this is the first demonstration of high-repetition-rate high-pulse-energy 1064-nm, instead of 1035-nm, femtosecond laser, based on commercially available Yb-doped rod-type PCF amplifier.

Funder

National Natural Science Foundation of China

Key Technology Research and Development Program of Shandong

Natural Science Foundation of Shandong Province

China Postdoctoral Science Foundation

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3