Abstract
Spatial light modulators (SLMs) have become an indispensable element in modern optics for their versatile performance in many applications. Among various types of SLMs, such as digital micromirror devices (DMD), liquid crystal-based phase-only spatial light modulators (LC-SLMs), and deformable mirrors (DM), LC-SLMs are often the method of choice due to their high efficiency, precise phase modulation, and abundant number of effective pixels. In general, for research grade applications, an additional SLM calibration step is required due to fabrication imperfection resulting in non-flat liquid crystal panels and varying phase responses over the SLM area. Here, we demonstrate a straightforward approach for reference-free orthogonal calibration of an arbitrary number of SLM subregions which only requires the same measurement time as global calibration. The proposed method requires minimal optical elements and can be applied to any optical setup as is. As a benchmark performance test, we achieved a 2.2-fold enhancement in correction efficiency for wavefront shaping through scattering media utilizing the calibrated 2160 subregions of the SLM, in comparison with a single global look-up table (LUT).
Funder
National Research Foundation of Korea
Ministry of Science and ICT, South Korea
Subject
Atomic and Molecular Physics, and Optics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献