Fiber Bragg grating sensing system for temperature measurements based on optically injected DFB-LD with an OEO loop

Author:

Lin Jiahui,Chen HaoORCID,Dai Weiyu1,Alsalman Osamah2ORCID,Xie Tongtong1,Shen Qiuyi,Zhu Chen3ORCID,Chen Daru

Affiliation:

1. Xiamen University

2. King Saud University

3. Research Center for Optical Fiber Sensing, Zhejiang Laboratory

Abstract

A novel fiber Bragg grating (FBG) sensing system, based on an optically injected distributed feedback laser diode (DFB-LD) with an optoelectronic oscillating (OEO) loop, is proposed and experimentally demonstrated for temperature measurements with high and tunable sensitivity. The FBG sensor device works as an edge filter to adjust the optical power of the injected beam in response to temperature variations. The optically injected DFB-LD works at Period-one (P1) oscillating state, and the central wavelength of the oscillating mode of the DFB-LD can be tuned by the variable power of the injected beam. Furthermore, an OEO loop is implemented to improve the signal quality of the generated P1 microwave signal. Hence, the sensing parameter of temperature is converted to the frequency variation of the generated P1 microwave signal in the proposed sensing system. In the proof-of-concept experiment, a series of P1 microwave signals are generated while different temperatures are applied to the FBG sensor. The sensitivity of the proposed FBG sensing system for temperature measurements can be tuned from 0.44322 GHz/°C to 1.25952 GHz/°C. The stability and repeatability experiments are also performed, demonstrating the high measurement accuracy (0.0629°C) and low error of the system. The proposed FBG-based sensing and interrogation system exhibits high sensitivity, large tunability, good linearity, and flexible sensing generality.

Funder

Project of Key Laboratory of Radar Imaging and Microwave Photonics

National Natural Science Foundation of China

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3