High band-width mid-infrared frequency-modulated Faraday rotation spectrometer for time resolved measurement of the OH radical

Author:

Cheng Feihu,Zhao Weixiong1ORCID,Fang BoORCID,Zhang Yang,Yang Nana,Zhou Hao1,Zhang Weijun1

Affiliation:

1. University of Science and Technology of China

Abstract

We present a novel mid-infrared frequency-modulated Faraday rotation spectrometer (FM-FRS) for highly sensitive and high bandwidth detection of OH radicals in a photolysis reactor. High frequency modulation (up to 150 MHz) of the probe laser using an electro-optical modulator (EOM) was used to produce a modulation sideband on the laser output. An axial magnetic field was applied to the multi-pass Herriott cell, causing the linearly polarized light to undergo Faraday rotation. OH radicals were generated in the cell by photolyzing a mixture of ozone (O3) and water (H2O) with a UV laser pulse. The detection limit of OH reaches 6.8 × 108 molecule/cm3 (1σ, 0.2 ms) after 3 and falling to 8.0 × 107 molecule/cm3 after 100 event integrations. Relying on HITRAN absorption cross section and line shape data, this corresponds to minimum detectable fractional absorption (Amin) of 1.9 × 10−5 and 2.2 × 10−6, respectively. A higher signal-to-noise ratio and better long-term stability was achieved than with conventional FMS because the approach was immune to interference from diamagnetic species and residual amplitude modulation noise. To our knowledge, this work reports the first detection of OH in a photolysis reactor by FM-FRS in the mid-infrared region, a technique that will provide a new and alternative spectroscopic approach for the kinetic study of OH and other intermediate radicals.

Funder

National Natural Science Foundation of China

Youth Innovation Promotion Association of the Chinese Academy of Sciences

the HFIPS Director’s Fund

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3